One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.
نویسندگان
چکیده
One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future researches in these fields.
منابع مشابه
Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures
Perovskite oxide manganites with a general formula of R1-x AxMnO3 (where R is a trivalent rare-earth element such as La, Pr, Sm, and A is a divalent alkaline-earth element such as Ca, Sr, and Ba) have received much attention due to their unusual electron-transport and magnetic properties, which are indispensable for applications in microelectronic, magnetic, and spintronic devices. Recent advan...
متن کاملZnO Quasi-1D Nanostructures: Synthesis, Modeling, and Properties for Applications in Conductometric Chemical Sensors
One-dimensional metal oxide nanostructures such as nanowires, nanorods, nanotubes, and nanobelts gained great attention for applications in sensing devices. ZnO is one of the most studied oxides for sensing applications due to its unique physical and chemical properties. In this paper, we provide a review of the recent research activities focused on the synthesis and sensing properties of pure,...
متن کاملSynthesis, Characterization and Transport Properties of Novel Ion-exchange Nanocomposite Membrane Containing In-situ Formed ZnO Nanoparticles
A new type of cation-exchange nanocomposite membranes was prepared by in-situ formation of ZnO nanoparticles in a blend containing sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) and sulfonated polyvinylchloride via a simple one-step chemical method. As-synthesized nanocomposite membranes were characterized using Fourier transform infrared spectroscopy, scan...
متن کاملCuMn2O4 nanostructures: Facial synthesis, structural,magnetical, electrical characterization and activation energy calculation
The work is the report about stearic acid sol-gel synthesis method, magnetically, electricalcharacterization and activation energy of copper manganese oxide nanostructures. The CuMn2O4 nanostructures are synthesized at a temperature of 600°C using the sol-gel method. The structural analysis using X-ray diffraction (XRD) and Scherrer equation show that the crystallite size of CuMn2O4 is ab...
متن کاملStudy of Oxygen Distortions in Titanate – Manganite Interfaces by Aberration Corrected STEM-EELS
Transition metal oxides constitute a most interesting family of materials thanks to the interplay between structure, electronic and orbital degrees of freedom, which are related to collective phenomena like magnetism, ferroelectricity, superconductivity, electron transfer, etc. Interfaces between complex oxide materials provide a promising scenario for novel physical phenomena to arise. The cry...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale research letters
دوره 11 1 شماره
صفحات -
تاریخ انتشار 2016